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Summary Many neuroendocrine tumors, including pheochromocytomas (PCs) and paragangliomas
(PGLs), express one or more somatostatin receptors (SSTR1-5). A number of studies have reported
SSTR expression in PCs and PGLs. However, receptor expression patterns have been conflicting,
and until recently, specific monoclonal antibodies were not available against SSTR1-5. The aim of
this study was to compare SSTR1-5 expression in succinate dehydrogenase (SDH)–deficient PCs
and PGLs (defined as having absent SDHB immunostaining) to those tumors with normal SDHB
staining. Immunohistochemistry for SDHB and SSTR1-5 was performed using specific monoclonal
antibodies on archived formalin-fixed, paraffin-embedded tissue from patients who had undergone
surgery for PC or PGLs. A total of 182 PC/PGLs were included (129 adrenal, 44 extra-adrenal, 9
metastases); 32 tumors were SDH deficient, whereas 150 tumors had positive SDHB staining.
SDH-deficient tumors were more likely to demonstrate moderate or strong staining for SSTR2A
and SSTR3 when compared with SDH-sufficient tumors (91% versus 49% [P b .0001] and 50%
versus 21% [P = .0008], respectively). Immunostaining for the other SSTRs was not different
between SDH-deficient and tumors with preserved SDHB staining. SSTR2A and SSTR3 are more
likely to be expressed in SDH-deficient PC/PGLs as compared with tumors demonstrating normal
SDHB staining pattern. These findings suggest that the role of somatostatin analogue therapy
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(unlabeled or radiolabeled) should be reexamined in the context of the underlying SDHB
immunohistochemistry pattern.
© 2014 Elsevier Inc. All rights reserved.
1. Introduction
Pheochromocytomas (PCs) and paragangliomas (PGLs)

are rare catecholamine-producing tumors arising from
chromaffin cells in the adrenal glands or extraadrenal neural
crest tissue. These catecholamine-secreting tumors are
frequently hereditary, resulting from germline mutations in
various tumor predisposition genes. Of these genes, succi-
nate dehydrogenase subunit B (SDHB) is of particular
interest due to increased malignant potential of associated
PC/PGLs (metastatic rate of 30% versus 10% of all PC/
PGLs) [1]. Determining whether PC/PGLs are benign or
malignant in the absence of metastatic disease is limited by
lack of reliable criteria to predict malignant behavior.
Currently, the only effective treatment of PC/PGLs is
surgery. Patients with inoperable malignant PC/PGLs may
die of metastatic disease or from complications due to excess
catecholamine production such as sudden death or heart
failure. Nonsurgical treatment options for malignant disease
are limited, and there is a lack of survival data available from
randomized controlled trials using chemotherapy and radi-
olabeled therapies [2–4], in part resulting from the rarity of
these tumors. Improved understanding of the biology of
SDHB-associated and/or malignant PC/PGLs would assist in
identifying new nonsurgical therapies.

Many neuroendocrine tumors, including PC/PGLs,
express one or more somatostatin receptor subtypes
(SSTR1-5). Somatostatin is a neuropeptide with affinity
for all 5 receptor subtypes and can inhibit both hormone
secretion and cell proliferation. Analogues of somatostatin
(octreotide, octreotide LAR, and lanreotide) demonstrate
high affinity for SSTR2 and, to a lesser extent, SSTR5.
Although they are very successfully used in the treatment of
some tumors types, such as SSTR2-expressing growth
hormone–secreting pituitary tumors, and have been dem-
onstrated to not only control symptoms but also increase
progression-free survival in patients with metastatic small
intestinal neuroendocrine tumors [5,6], treatment for
patients with chromaffin cell tumors has been variable and
overall disappointing [7–13].

A number of studies have assessed SSTR subtypes in PC/
PGL [14–26]. Results have been conflicting as to the
frequency of receptor subtype expression. Although SSTR3
has been detected in most tumors studied, SSTR2A expression
has varied from less than 15% [15,16] to up to 100% of tumors
[18,24]. Similarly, results for SSTR1 have varied, and when
assessed, SSTR5 has been shown to be positive in less than
50% of tumors in most studies [14–16,18]. Differences in
SSTR subtypes between tumors from patients with familial
tumor syndromes and those with sporadic tumors have only
been assessed in one study with only small numbers of
hereditary tumors, and differences in SSTR expression were
not identified [18]. A further study identified SSTR2a staining
in 2 patients with a germline SDHDmutation, but there was no
control group [25]. Studies assessing SSTR expression have
used a variety of methods including reverse transcriptase
polymerase chain reaction and immunohistochemistry (IHC).
In addition to varying methods used, until recently
interpretation has further been hampered by the lack of
specific monoclonal antibodies against the 5 SSTR sub-
types. Fischer et al [27] briefly reported the use of the
monoclonal antibody UMB-1 against SSTR2A in a number
of normal and neoplastic tissues including PCs, in which
most tumors demonstrated positive staining. Use of
monoclonal antibodies against the other SSTRs has not
been reported in PC/PGLs. Recently, a novel somatostatin
analogue has been developed, pasireotide, which has
activity at a wider range of SSTRs than octreotide (all
SSTRs with the exception of SSTR4) [28]. The role of
pasireotide in patients with metastatic and/or inoperable PC/
PGL is not known, but cell culture studies have suggested
that it is more promising than octreotide [21]. Based on the
results of SSTR status, evidence of expression of SSTRs
other than SSTR4 would support a targeted trial of this agent
(unlabeled and/or labeled to radionuclides) in patients with
metastatic/inoperable PC/PGL.

The aims of this study were (1) to assess the somatostatin
receptor status of PC/PGLs using specific monoclonal antibod-
ies against somatostatin receptor subtypes 1 to 5 and (2) to
determine whether somatostatin receptor subtype expression
varies in SDH-deficient tumors when compared with tumors
showing a normal pattern of SDHB staining.

2. Materials and methods

Patients who had undergone previous surgery for PC or
PGLwere identified from theWaikatoHospital endocrine unit,
Hamilton, New Zealand, and the Royal North Shore Hospital
anatomical pathology department, Sydney, Australia. Ethical
approval was obtained from the Northern Y Regional Ethics
Committee (NTY/11/05/049) and in accordance with the
Human Tissue Act for the New Zealand and Australian
samples, respectively. Results of germline genetic testing for
PC/PGL predisposition genes (SDHA, SDHB, SDHC, SDHD,
SDHAF2, RET, VHL, TMEM127) were available on selected



Table 1 Details of the antibodies used for immunohistochemical
studies

Antibody Clone Type Supplier Dilution

SDHA 2E Mouse
monoclonal

Abcam,
Cambridge, MA

1:1000

SDHB 21A11 Mouse
monoclonal

Abcam 1:500

SSTR1 UMB-7 Rabbit
monoclonal

Epitomics Inc,
Burlingame, CA

1:1000

SSTR2a UMB-1 Rabbit
monoclonal

Epitomics Inc 1:100

SSTR3 UMB-5 Rabbit
monoclonal

Epitomics Inc 1:300

SSTR4 ACE29616 Rabbit
monoclonal

Novartis, Basel,
Switzerland

1:1000

SSTR5 UMB-4 Rabbit
monoclonal

Epitomics Inc 1:100
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patients. Diagnosis of PC/PGL was confirmed by clinical,
biochemical, and histologic assessment.

IHC for SDHB, SDHA, and SSTRs was performed on
tissue microarrays containing duplicate 1-mm cores of tissue
from archived formalin-fixed, paraffin-embedded tissue
blocks using rabbit monoclonal antibodies (dilutions and
clones provided in Table 1). Slides were stained using the
LeicaBondIII autostainer (Leica Microsystems, Mount
Waverley, Victoria, Australia). Heat-induced epitope retrieval
was performed at 97°C for 30 minutes in the manufacturer's
acidic retrieval solution ER1 (VBS part no. AR9961). SSTR
immunostaining was scored using a scheme similar to that
reported by Körner et al [29]. Briefly, cases were scored as 0
(negative) if no cells demonstrated positive staining, and then
semiquantitatively if staining was present from 1+ (weak
staining, in b10% of cells) to 2+ (moderate staining, eg,
positive at low power but not circumferential at high power) to
3+ (moderate diffuse and strong staining including circumfer-
ential staining) to 4+ (intense diffuse and strong staining
including circumferential staining). Islets of Langerhans from
nonneoplastic pancreaswere used as external positive controls,
with other tissue from the same sections including pancreatic
acinar cells acting as external negative controls. Immunostain-
ing was evaluated by a single observer (A. J. G.) who was
blinded as to the results of genetic testing and SDHB IHC at the
time of scoring.

Statistical analysis was performed using nonparametric
statistics due to the nonnormality of the data; Kolmogorov-
Smirnov 2-sample tests and difference of proportion testing,
where appropriate, were performed using Statistica version
11 (Statsoft Inc, Tulsa, OK).

3. Results

A total of 182 PC/PGL specimens were identified from
174 patients. Of the 182 tumors, 129 were adrenal, 44 extra-
adrenal (of which 18 were head and neck), and 9 metastases
(all from PC).

3.1. SDH staining

Thirty-two tumors had absent SDHB staining and 2 also
had loss of SDHA staining. All patients with tumors that
demonstrated negative staining for SDHB (ie, “SDH-
deficient”) who underwent germline mutation testing were
shown to have a mutation in SDHA, SDHB, SDHC, or
SDHD. Of the 2 patients with negative staining for SDHA,
both were found to have a germline SDHA mutation.

Of SDH-deficient tumors, there were 32 specimens
from 30 patients (6 adrenal lesions; 22 PGLs, of which
9 were arising from the head or neck; and 4 metastases).
The median age of patients with an SDH-deficient
tumor was 45 years (range, 19-79 years) as compared
with 52 years (range, 19-84 years) in the SDH-sufficient
patients (P b .05).
3.2. SSTR receptor status

SSTR IHC results are shown in Table 2 and illustrated
in the Figure.

3.2.1. SSTR1
One hundred seventy-nine tumors had SSTR1 staining

performed. Overall, 159 (89%) of 179 of all PCs and PGLs
demonstrated strong (3+) staining for SSTR1. All SDH-
deficient tumors (n = 32) demonstrated strong (3+) staining,
as did 127 (86%) of 147 SDH-sufficient tumors. No significant
difference in SSTR1 staining was present between SDH-
deficient tumors and thosewith normal SDH staining (PN .10).
No differences in SSTR1 statuswere identifiedwithin different
lesions from the same patient.

3.2.2. SSTR2a
One hundred seventy-nine tumors had SSTR2a staining

performed. Overall, 82 (46%) of 179 of all PCs and PGLs
demonstrated strong (3+ or 4+) staining for SSTR2a. This
staining was accentuated along the membrane, but was also
cytoplasmic (Figure).

SSTR2a staining was moderate (2+) or strong (3+ or 4+)
in 29 (91%) of 32 SDH-deficient tumors compared with 72
(49%) of 147 SDH-sufficient tumors (P = .0000). This
differentiation was independent of the size of the 2 tumor
groups (χ2 = 19.58, P b .001). No staining was observed in
54 (37%) of 147 of SDH-sufficient patients as compared
with 3 (9%) of 32 SDH-deficient tumors.

Comparing adrenal versus extra-adrenal lesions, PCs
demonstrated moderate (2+) or strong (3+ or 4+) staining in
61 (49%) of 128 tumors (5/6 SDH-deficient PCs and 56/122
SDH-sufficient PCs); moderate or strong staining was
present in 36 (77%) of 47 PGLs (20/22 SDH-deficient
PGLs and 14/21 SDH-sufficient PGLs), and all 9 head and
neck PGLs (HNPGL). SDH-sufficient tumors showed very
strong staining (4+), as did 5/9 SDH-deficient tumors. Of the



Table 2 SSTR immunohistochemistry results

Receptor Grade

SDH deficient SDH sufficient

TotalA EA Met A EA Met

SSTR1 0 0 0 0 0 1/21 0 1/179 (0.6%)
1 0 0 0 5/121 0 0 5/179 (3%)
2 0 0 0 12/121 2/21 0 14/179 (8%)
3 6/6 22/22 4/4 104/121 18/21 5/5 159/179 (89%)

SSTR2a 0 1/6 2/22 0 48/122 5/21 1/4 57/179 (32%)
1 0 0 0 18/122 2/21 1/4 21/179 (12%)
2 1/6 4/22 0 9/122 3/21 2/4 19/179 (11%)
3 3/6 3/22 2/4 15/122 0 0 23/179 (13%)
4 1/6 13/22 2/4 32/122 11/21 0 59/179 (33%)

SSTR3 0 3/6 8/22 1/4 79/121 16/22 5/5 112/180 (62%)
1 2/6 2/22 0 17/121 1/22 0 22/180 (12%)
2 1/6 7/22 2/4 18/121 1/22 0 29/180 (16%)
3 0 5/22 1/4 7/121 3/22 0 16/180 (9%)
4 0 0 0 0 1/22 0 1/180 (0.6%)

SSTR4 0 6/6 20/22 4/4 123/123 20/21 4/4 177/180 (98%)
1 0 1/22 0 0 1/21 0 2/180 (1%)
2 0 1/22 0 0 0 0 1/180 (0.6%)

SSTR5 0 6/6 20/20 4/4 118/119 20/21 4/4 172/174 (99%)
1 0 0 0 0 0 0 0/174 (0%)
2 0 0 0 1/119 0 0 1/174 (0.6%)
3 0 0 0 0 1/21 0 1/174 (0.6%)

Abbreviations: EA, extra-adrenal (PGL); A, adrenal; Met, metastasis.
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6 patients in whom multiple tumors were studied, SSTR2a
status varied in only 1 SDH-sufficient patient (1 of 2metastases
assessed had weak (1+) staining, whereas both the other
metastasis and primary lesion were negative).

All 4 metastases from SDH-deficient tumors demonstrat-
ed strong SSTR2a staining compared with none of the SDH-
sufficient metastases.

3.2.3. SSTR3
SSTR3 immunostaining was performed in 180 tumors.

Overall, 46 (26%) of 180 had moderate (2+) or strong (3+ or 4
+) staining. Moderate or strong staining was present in 16
(50%) of 32 tumors from SDH-deficient tumors compared
with 30 (20%) of 148 SDH-sufficient tumors (P = .004). This
differentiation was also independent of the group sizes (χ2 =
13.84, P b .01).

PCs demonstrated moderate (2+) or strong (3+ or 4+)
SSTR3 staining in 26 (20%) of 127 tumors (1/6 SDH-deficient
PCs and 25/121 SDH-sufficient PCs). Moderate or strong
staining was present in 17 (39%) of 44 PGLs (12/22 SDH-
mutated PGLs and 5/22 non–SDHmutated PGLs). There was
a significantly different proportion of moderate and strongly
stained PCs compared with PGLs (P = .012).

All 5 metastases demonstrating SDH sufficiency had
absent SSTR3 staining as compared with 1 of 4 with SDH
deficiency. Six patients had more than 1 tumor included.
Of these, 1 SDH-deficient patient had absent SSTR3
staining in 1 PC metastasis, whereas the other metastasis
had strong (3+) staining. Two SDH-sufficient patients also
demonstrated variation between PC tumors (0 versus 3+
and 0 versus 1+, respectively).

3.2.4. SSTR4
SSTR4 IHC was performed in 180 tumors. Overall

immunostaining was positive in 3 PGLs (2 SDH deficient).
All PCs and metastases demonstrated negative staining. No
significant differences were seen between SDH-deficient and
SDH-sufficient tumors (P N .10). SSTR4 status was identical
when different lesions from the same patient were compared
(including metastases).

3.2.5. SSTR5
SSTR5 IHCwas performed in 174 tumors. Immunostaining

was positive in 2 of 174 tumors (both SDH sufficient—1 PC
and 1 PGL). No significant staining differences were seen
between SDH-deficient and SDH-sufficient tumors (P N .10).
No differences in SSTR5 statuswere identifiedwithin different
lesions from the same patient.
4. Discussion

SSTR immunostaining of PC or PGLs varies according to
receptor subtype. Most tumors demonstrated positive
staining for SSTR1, whereas most tumors did not stain for
SSTR4 or SSTR5, irrespective of whether tumors were SDH
deficient or not. SSTR2a and SSTR3 expression patterns
were more variable.



Figure Serial sections of PC/PGL stained with hematoxylin and eosin (A, E), SDHB (B, F), SSTR2A (C, G), and SSTR3 (D, H). Panels A to
D show an SDHB-mutated PGL with completely negative staining for SDHB (B) but diffuse strong positive staining for SSTR2A (C), which is
predominantly membranous, and SSTR3 (D), which is granular and cytoplasmic. In contrast, panels E to H show a PC that lacks SDHmutation
and therefore shows positive staining for SDHB (F) and negative staining for SSTR2A (C) and SSTR3 (D). The presence of positive staining of
endothelial cells (arrows) for SDHB (B) and SSTR2A (G) acts as a positive internal control in cases that otherwise show negative staining.
Original magnifications ×400.
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Both SSTR2A and SSTR3 staining was significantly
different between SDH deficient and those with normal SDH
staining patterns. We have found SDHB IHC to be a robust
and reliable marker of SDHmutation [30,31], and all patients
in our SDH-deficient cohort who underwent full genetic
testing for the SDH genes as part of their clinical care have
been shown to harbor a mutation in one of the SDH genes
[30]. SDH-deficient tumors were more likely to demonstrate
moderate or strong SSTR2a and SSTR3 staining when
compared with tumors with preserved SDH staining. Of
note, SSTR staining was not exclusively membranous in our
cohort, as most cases demonstrated some cytoplasmic staining
but withmembranous accentuation (Figure)—a similar pattern
to that reported by Körner et al [29] in meningiomas but not
gastrointestinal neuroendocrine tumors.

Of the small numbers of patients with more than 1 tumor
studied, there was some variation in SSTR3 staining, whereas
the other SSTRs showed good correlation. Although data were
limited, there was a suggestion that within the group of SDH-
sufficient tumors, strong SSTR2a staining was more likely in
HNPGLs than thoracoabdominal PGLs. Conversely, in SDH-
deficient PGLs, strong SSTR2a staining was more likely in
abdominal PGLs. These data would suggest that the role of
somatostatin analogues, both labeled and unlabeled, should be
reviewed in the context of the underlying SDH status.

The outcomes of treating patients with PCs and PGLs
with somatostatin analogues have been variable and overall
disappointing [7–13,32] despite in vivo data suggesting that
these agents may be effective [33]. However, assessment of
response to treatment based on specific SSTR subtype was
not included in previous trials, as specific monoclonal
antibodies against the SSTRs were not available at the time.
Similarly, assessment of germline SDH mutation status was
not reported in these trials of somatostatin analogues because
the publications mostly predated widespread availability of
genetic testing. A single case reported by Tonyukuk et al [12]
with multiple somatostatin receptor scintigraphy (SRS)–
positive HNPGLs, secretory disease, and a positive family
history was most likely SDH associated. In this case, a partial
tumor response, an improvement in performance status, and
decreased frequency of “attacks” in response to octreotide
therapy (short-acting, followed by depot preparation) were
noted for 26 months of treatment [12]. A recent article
reported a dramatic clinical and biochemical response of an
SRS-positive noradrenaline- and dopamine-secreting
HNPGL to high-dose long-acting octreotide, but neither
the SDH mutation nor SSTR status was reported [34]. In
articles in which SRS was performed, there appeared to be a
trend to improved biochemical and/or clinical status (blood
pressure, performance status) in some SRS-positive patients
in response to either short-acting or depot preparations of
octreotide [8,11,12], but the presence of mixed disease (both
SRS-positive and SRS-negative tumors) may have affected
response in some series [7]. There have been no reports
specifically assessing the use of unlabeled SST analogues in
SDH mutation–positive patients with positive SSTR2a
expression. Safe, effective treatment options for patients
with metastatic PC/PGL are currently very limited. The
findings from the current study suggest that if a randomized
controlled trial of SSTR agonists of patients with metastatic
PC/PGL is performed, this should include the assessment of
the underlying SSTR status and SDH status.

Pasireotide is a new somatostatin analogue, which has
activity at all SSTRs apart from SSTR4 [28]. In vitro data
suggest that it may be more promising than octreotide [21],
but to date, there is no published literature assessing
biochemical or tumor response to this agent. The current
study demonstrates that SDH-associated tumors are more



6 M. S. Elston et al.
likely to show SSTR3 immunostaining in addition to SSTR2a.
If pasireotide is to be trialed in PC/PGL patients, it would seem
prudent to select SDH-associated tumors with positive SSTR2a
and SSTR3 staining because this group would seem the most
likely to demonstrate benefit. Tumors with preserved SDH
staining are less likely to express SSTR2Aor SSTR3; therefore,
pasireotide is less likely to be effective in this patient group.

Radiolabeled somatostatin analogues have been used in a
number of small series of patients with metastatic or inoperable
PC/PGLs [3,35–40]. Similar to the studies using unlabeled
somatostatin analogues, most patients are not classified
according to SSTR status and do not have their SDH status
described. In a small case series of 4 SDHD germline mutation–
positive patients with nonsecretory PGLs assessing the response
to peptide receptor radionuclide therapy (PRRT) using (177Lu)
DOTATATE, there were 2 responses according to RECIST
criteria and the other 2 individuals had reduced uptake on SRS
[35]. At best some patientswith progressive disease do appear to
have partial response to PRRT [3,35–38]; however, description
of secretory status of tumors is surprisingly lacking in most of
these series.

SRS, using either traditional 111In-octreotide or other
octreotide derivatives, for example, DOTATATE, has been
described to be more sensitive than metaiodobenzylguanidine
scanning in patients with an underlying SDH mutation with a
sensitivity of 69.5% versus 42.7% [41]. The higher rate of
SSTR2a positivity demonstrated in this study supports the use of
SRS, to complement anatomical imaging, in the diagnostic
algorithm of patients with SDH-positive tumors.

There are a number of limitations of this study. This is a
retrospective study, and fresh-frozen tissue was not available
to confirm the findings using an alternative method such as
Western blotting or in vitro autoradiography. No patients had
received somatostatin analogues (radiolabeled or unlabeled)
to see if the response correlated with the SSTR staining. Only
a small number of patients had more than 1 lesion available,
so we are limited in being able to assess the heterogeneity of
SSTRs between tumors within the same patient. However, this
study is the first to suggest that SSTR subtypes appear to vary
according to SDH status. The mechanism for the difference in
SSTR status is not known. It would seem prudent in those
patients who are receiving PRRT to check SSTR status of all
lesions in which tissue is available and to see if this correlates
with treatment response (clinical, biochemical, and radiologic).

5. Conclusion

SDH-deficient tumors are more likely to demonstrate
positive SSTR2a and SSTR3 immunostaining than tumors
with a normal SDH staining pattern. These findings suggest
that the role of somatostatin analogue therapy (unlabeled or
radiolabeled) should be reexamined in the context of the
underlying SDH status. Somatostatin analogue therapy may
have a particular therapeutic role in patients with an
underlying SDH germline mutation and for HNPGLs in
patients without an underlying SDH mutation.
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